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1. Introduction

The nonperturbative dynamics of asymptotically free gauge theories with matter fields

transforming according to higher dimensional representations of the underlying gauge group

is a topic of current research interest. Physics beyond the Standard Model (BSM) offers

a new arena for the use of these theories, which are expected to develop a nonperturba-

tive infrared fixed point for a very low number of flavors [1, 2]. Because they minimize

the tension with the electroweak precision constraints, some of these theories are excellent

candidates for the dynamical breaking of the electroweak symmetry of walking technicolor

type, which were first introduced in ref. [3 – 8]. Since the number of flavors needed to get

near the conformal fixed point is small, the associated models have been termed minimal

walking technicolor [1, 2, 9]. By walking one refers to the fact that the running coupling

decreases much more slowly with the reference energy scale than in the case of QCD-like

theories. Yet, another interesting physical application of the study of the phase diagram of

strongly coupled theories is to provide the theoretical landscape underlying the unparticle

physics world [10, 11]. The theory landscape was provided in ref. [12] where it was shown

that the fraction of asymptotically free gauge theories developing an infrared fixed point

is quite large. Studying their phase diagram is a fundamental step if these theories aspire

to become realistic candidates for BSM physics. Insight into the phase diagram of such
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theories has been recently provided by a proposed all-order beta function for any number of

colours and for any representation [13]. Moreover, in the limit of a large number of colours,

the orientifold planar equivalence relates theories with fermions in higher representations

to supersymmetric theories [14]. It provides interesting predictions that deserve nonper-

turbative investigations [15, 16]. The necessity to study the large-N limit makes these

theories more expensive to study numerically. Finally, understanding the strong dynamics

that governs the low-energy behaviour of such theories is an interesting problem per se.

Lattice is a privileged tool for exploring the nonperturbative dynamics of strongly in-

teracting theories, but Monte Carlo simulations of these theories can capture the interesting

dynamical features only if the full fermion determinant is taken into account in the Boltz-

mann weight used for generating gauge configurations. So far only limited experience has

been gathered from numerical simulations with dynamical fermions beyond QCD [17, 18].

In the light of recent algorithmic progresses in simulating quantum field theories with

dynamical fermions [19 – 24], numerical studies with fermions in higher-dimensional repre-

sentations are now a realistic target (see ref. [18] for early work in this direction). As a

preliminary work, which provides guidance for large-scale simulations, we present here an

investigation of the space of bare couplings by analytical tools, such as perturbation theory

and chiral Lagrangians.

Perturbative results are useful to understand the behaviour of the lattice theory as

the continuum limit is approached: on one hand they provide a connection between the

lattice results and their continuum counterparts; on the other hand they offer some quan-

titative support in choosing the bare parameters in the early stages of numerical simula-

tions. Precision studies in QCD have shown sizable discrepancies between perturbative

and nonperturbative computations at the values of the bare parameters that are currently

accessible. Assessing the accuracy of perturbation theory for theories with fermions in

higher-dimensional representations is beyond the scope of this paper and will be deferred

to future publications. Instead we shall supplement perturbative calculations with sensible

assumptions, that we discuss below, in order to dictate the choice of the values of the bare

parameters for first numerical investigations.

In this work perturbation theory is used to determine the dependence of the lattice

spacing on the bare lattice coupling, the ratio of lambda parameters ΛMS/Λlat, the critical

value of the bare mass mc and critical hopping parameter κc, and the renormalization

constants for fermionic bilinears. The gauge action considered is the simple plaquette

action, and the fermion action is the unimproved Wilson action. This simple choice provides

a concrete example for performing the perturbative calculations, and matches the existing,

and forthcoming numerical simulations. Four specific examples of lattice theories with

Wilson fermions are compared below. Results for quenched QCD (QCD0), and for QCD

with two flavours of dynamical fermions (QCD2) are known both in perturbation theory,

and from non-perturbative computations. They are briefly summarized in this work in

order to set the framework for our computations, and to assess the accuracy of perturbation

theory. We then present the generalization of the perturbative calculations to arbitrary

representations, and analyze in detail their implications for two theories that are good

candidates for BSM phenomenology, namely the SU(3) gauge theory with nf = 2 flavours
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in the two-index symmetric representation (T1), and the SU(2) gauge theory with two

flavours in the two-index symmetric representation (T2).

The chiral Lagrangian describing the dynamics of the light Goldstone bosons is ana-

lyzed in order to clarify the structure of the phase diagram that is likely to be revealed

by numerical simulations for small quark masses. We discuss in particular the theories

with fermions in higher representations introduced above. Note that the same approach

can be readily applied to other theories, like e.g. gauge theories with fermions in the two-

index antisymmetric representations, that are interesting for numerical tests of the planar

orientifold equivalence. Even though we do not discuss these theories explicitly here, our

conclusions can be specialized in a straightforward manner.

The paper is organized as follows. In section 2 we discuss the perturbative results

describing asymptotic scaling, we compute the ratio of Λ parameters, and discuss the

approach of the continuum limit. Section 3 reports some useful results at one-loop in

perturbation theory. We first consider the renormalization of the bare mass for Wilson

fermions; the critical value of the hopping parameter κc is computed both up to two loops,

and using the so-called cactus dressing to resum a particular class of tadpole diagrams [25].

Similarly we present results for the renormalization constants for fermion bilinears. Finally

in section 4 we discuss the form of the chiral Lagrangian that describes the low-energy

dynamics in theories with fermions in arbitrary representation and the possible phase

structure as the quark mass is lowered at finite lattice spacing.

Numerical simulations of the theories with fermions in higher representations are de-

ferred to further publications.

2. Scaling

2.1 Ratio of Λ parameters

The β function encodes the dependence of the lattice spacing a on the bare coupling

constant g0. In mass-independent renormalization schemes, the lattice spacing is uniquely

determined by the bare coupling, according to the renormalization group equation:

βlat(g0) = −a
∂g0

∂a

∣

∣

∣

∣

gR fixed

, (2.1)

where the subscript lat refers to the lattice scheme which is being considered here.

For a generic gauge theory, with gauge group SU(N) and nf fermions in a given

representation R of the colour group, the two-loop computation in perturbation theory

yields the familiar expression:

βlat(g0) = −β0g
3
0 − β1g

5
0 + O(g7

0) (2.2)

β0 =
1

(4π)2

[

11

3
C2(A) − 4

3
TRnf

]

(2.3)

β1 =
1

(4π)4

[

34

3
C2(A)2 − 20

3
C2(A)TRnf − 4C2(R)TRnf

]

, (2.4)
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where TR yields the normalization of the generators, and C2(R) is the quadratic Casimir,

both in the representation R. Factors of C2(A), the quadratic Casimir in the adjoint repre-

sentation, arise because of gluon loops, and do not change as the fermionic representation

is varied. Note that the first two coefficients of the β function are universal and depend

neither on the regularization nor on the renormalization scheme. For N = 3 and fermions

in the fundamental representation, the expressions above reduce to the usual values of

β0, β1. A table of the group-theoretical factors for the representations considered in this

work are reported in appendix A.

The asymptotic behaviour of a(g0) is obtained by integrating eq. (2.1), and the scale

Λlat is the integration constant that appears in this procedure. Following the notation in

ref. [26], we write:

a(g0)Λlat = exp

[

−
∫ g0 dg′

βlat(g′)

]

= exp
[

−1/(2β0g
2
0)
] (

β0g
2
0

)−β1/(2β2

0
) [

1 + O(g2
0)
]

. (2.5)

The ratio of Λ-parameters defined in different renormalization schemes is obtained

from the one-loop relation between the coupling constants [26 – 29]. In particular the run-

ning coupling in the MS scheme, renormalized at a scale µ, is related to the lattice bare

coupling via:

gMS(µ) =

{

1 +
∞
∑

l=1

Z(l)(µa, λ0)g
2l
0

}−1/2

g0, (2.6)

where λ0 is the bare gauge-fixing parameter in the lattice formulation. This relation

can be obtained e.g. using the background field technique [30 – 32]. The first coefficient

Z(1)(µa, λ0) for matter fields in the fundamental representation can be found in the liter-

ature, see e.g. ref. [29, 26]. It has the generic form:

Z(1)(µa, λ0)
∣

∣

∣

λ0=1
= β0 log(a2µ2) + l0, (2.7)

and the ratio of Λ-parameters is obtained from the coefficients in eq. (2.7) as:

Λlat/ΛMS = exp [l0/(2β0)] . (2.8)

Having already written the coefficient β0 for a generic representation in eq. (2.3), the ex-

pression for the finite part of the one-loop contribution in eq. (2.6), l0, is the only ingredient

needed in order to convert the Λ-parameter. The coefficient l0 is obtained by inspecting

the one-loop diagrams that contribute to eq. (2.7). The group-theoretical factors need to

be changed in order to take into account the new fermionic representation, while the nu-

merical factors that arise from the integration over the lattice momenta remain unchanged.

For a generic representation R, we obtain:

l0 =
1

(8π2)

[

−2π2 C2(F ) − 3.54958342046 C2(A)+

+1.057389936 TRnf ] , (2.9)
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Representation β0 β1 l0
SU(2), nf = 0 0.0464389 0.00181793 -0.277412

SU(3), nf = 0 0.0696583 0.00409035 -0.468201

SU(2), nf = 2, fund 0.0612149 0.00307445 -0.454809

SU(3), nf = 2, fund 0.0612149 0.00307445 -0.454809

SU(3), nf = 2, 2S 0.0274412 -0.00259323 -0.401241

SU(2), nf = 2, 2S 0.0126651 -0.00160406 -0.223844

Table 1: Perturbative coefficients appearing in one-loop perturbative computations.

where the only dependence on the fermionic representation is encoded in the last term

in the sum on the r.h.s. of eq. (2.9). Explicit values for some representations of interest

are summarized in table 1. The well-known values for the quenched SU(2) and SU(3)

theories, and for QCD with two flavours of fundamental fermions are reported in order to

show explicitly the differences in the perturbative coefficients as we introduce matter in

higher representations. As a non-trivial check, we can specialize eq. (2.9) to the case of

N = 1 SYM, which corresponds to nf = 1/2 flavour of fermions in the adjoint representa-

tion. Using the group-theoretical factors reported in table 2 in appendix A, our expression

reproduces eq. (24) in ref. [33].

The ratios of Λ-parameters are easily obtained from the values in table 1. The coeffi-

cients in the first lines of the table reproduce the known results:

ΛMS/Λlat

∣

∣

SU(2),nf =0
= 19.82, (2.10)

ΛMS/Λlat

∣

∣

SU(3),nf =0
= 28.81, (2.11)

ΛMS/Λlat

∣

∣

SU(3),nf=2,fund
= 41.05, (2.12)

see e.g. ref. [28, 29, 26]. The last two lines yield the new results for the higher representa-

tions that we want to consider in this work:

ΛMS/Λlat

∣

∣

SU(3),nf=2,2S
= 1469.59 (2.13)

ΛMS/Λlat

∣

∣

SU(2),nf=2,2S
= 6884.36. (2.14)

Values for other representations can be easily deduced from the formulae above. Including

two flavours of fermions in higher representations induces large variations in the ratios of

Λ parameters. This is at odds with the results for fermions in the fundamental repre-

sentation, where adding the effect of fermion loops yields a much smaller variation of the

ratio. However the large values obtained for fermions in two-index representations can be

understood by rewriting the ratio β0/2l0 in a way which makes the 1/N scaling explicit:

l0
2β0

≃ −3.65978 · 1 − 0.0787969TR
nf

N − 0.735484 1
N2

1 − 4
11TR

nf

N

. (2.15)

In eq. (2.15) we can easily recognize the contributions O(nf/N) from fermion loops, and the

contributions from the non-planar gluonic diagrams of O(1/N2). For fermions in the funda-

mental representation TR = 1/2, and therefore the fermion determinant yields corrections
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that are suppressed by nf/N . For fermions in 2-index representations, the normalization

of the generators is such that TR ∼ O(N), and hence the contribution from the fermion

determinant is of the same order as the gluon contribution, both in the numerator and

the denominator, and therefore large variations are found with respect to the pure gauge

theory.

2.2 Perturbative and nonperturbative scaling

The perturbative results obtained in the previous subsection can be used to sketch the

scaling of the lattice spacing for theories in higher representations, being well aware of the

limitations of perturbation theory. The nonperturbative scaling of the lattice spacing has

been carefully studied for QCD, both in the quenched approximation, and for the theory

with dynamical quarks in the fundamental representation. For the latter theories, the

accuracy of perturbative estimates can be assessed by comparing numerical and analytical

results. As we shall see below, perturbation theory in QCD does not yield an accurate

description of the scaling of physical quantities. Therefore, any result obtained in this

framework is bound to be approximate and should be used mostly as a guide for forthcoming

numerical simulations.

In order to relate more easily to the notation used in numerical simulations, let us

introduce the lattice coupling β = 2N/g2
0 . We will henceforth use β to indicate the bare

lattice coupling, unless explicitly stated. The asymptotic scaling formula reported in the

previous subsection yields the value of the lattice spacing in physical units as a function of β:

a−1(β)

ΛMS

=

(

Λlat

ΛMS

)

exp

[

β

4Nβ0

]

(2Nβ0/β)β1/(2β2

0
) [1 + O(1/β)] . (2.16)

Having computed the ratio of Λ parameters, the only input that is required is the value of

ΛMS.

For the SU(3) pure gauge theory, figure 1 displays the prediction for the lattice spacing

a in physical units [fm], computed from two-loop perturbation theory using the input

from ref. [34, 35]; the curve is compared to the interpolation of the nonperturbative data

presented in [36]. The error band in the figure is simply the error that is obtained from

propagating the error in the determination of ΛMS to the value of a(β). As shown by the

plot, the perturbative prediction in bare perturbation theory underestimates the actual

lattice spacing by 30-50% at the values of β between 5.8 and 6.2, where most simulations

have been performed so far. The two computations agree at large values of β, as expected

when the continuum limit is approached.

For the SU(3) theory with two flavours of Wilson fermions, the perturbative prediction

is obtained using the Λ parameter computed in ref. [37, 38]; it can be compared to the

value of the lattice spacing recently computed for two values of β in ref. [39]. Again, in

the range that is accessible to current simulations, the perturbative estimate is smaller by

approximately 30%–40%. Such large deviations between lattice bare perturbation theory

and nonperturbative results are very well-known to lattice QCD practitioners [40]. They

are reported here in order to have a concise summary of the results in QCD, before moving

into new territories.
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Figure 1: Comparison of the lattice scaling in physical units predicted from perturbation theory

with the nonperturbative results obtained from numerical simulations. The theory is pure gauge

SU(3). The blue (respectively red) curve represents the perturbative (resp. nonperturbative) es-

timate of the lattice spacing in fm as a function of the lattice bare coupling β. The error on the

perturbative estimate comes from the error in the determination of Λ
MS

. The red curve is an

interpolation of the nonpertubative determination of the lattice spacing.

Figure 2 shows the perturbative estimate for the value of the dimensionless quantity

a(β)ΛMS for QCD with nf = 0, 2 in the same range of β; for the values of β used in current

simulations, one can see that 1/(aΛMS) ≈ 20. Given that the hadron masses in QCD turn

out to be of the order of ΛMS, the value of 1/(aΛMS) is such that lattice artefacts are small,

while sufficiently large physical volumes can be reached on lattices that have 20–30 points

in each direction. Lattice simulations for theories beyond QCD need to identify a similar

regime in order to avoid large lattice artefacts and/or large finite volume effects.

Perturbative results can be used for the theories with fermions in higher representa-

tions in order to arrive at an educated guess for the value of ΛMSa(β) from perturbative

scaling, provided a few hypotheses are made in order to identify the relevant energy scales.

As already mentioned in the introduction, a near-conformal behaviour is expected in the

theories T1 and T2. The dependence of the coupling on the lattice spacing in these theories

is characterized by two different regimes. At high energies the theories are asymptotically

free, and therefore we expect the usual logarithmic running of the renormalized coupling.

However, as the energy scale is decreased, it should reach a value, which we denote Λw,

where the coupling starts to “walk”, i.e. where the coupling is only weakly dependent on

the cutoff. The walking behaviour should extend for several orders of magnitude, until

a lower scale ΛIR where the coupling starts running again. Phenomenologically relevant

models would favour a ratio Λw/ΛIR ≥ 103 [2]. However, it should be noted that the

– 7 –



J
H
E
P
0
6
(
2
0
0
8
)
0
0
7

5.8 6.0 6.2 6.4
Β

15

20

25

1�Ha L
MS
L

Figure 2: The perturbative result for the dimensionless quantity a(β)Λ
MS

as a function of β for

pure gauge SU(3) (blue line), and SU(3) with nf = 2 flavours of Wilson fermions (red line).
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Figure 3: The lattice spacing in unit of Λ
MS

as a function of β for the theory T1 (left), and T2

(right).

running of the coupling constant is scheme dependent, and therefore this ratio should only

be taken as an indicative value.

The perturbative values of ΛMSa(β) as a function of β are reported in figure 3 for

the theories T1 and T2. If we assume that ΛMS ∼ ΛIR, and if we further require that

Λwa(β) ≈ 0.1, then numerical simulations of phenomenologically relevant models would

require ΛMSa(β) ≤ 10−5. The range of β in the figure is chosen to yield values of ΛMSa(β)

that saturate the inequality above; if the ratios between typical hadron masses turn out to

be large in units of ΛMS, so that mhada ≃ 1, then higher values of β would be needed in order

to keep both lattice artefacts and finite volume effects under control. More quantitative

information can only be obtained from numerical simulations. As already seen above,

in numerical simulations of QCD nonperturbative scaling does deviate from the two-loop

predictions by up to 50%. We should therefore take these perturbative results with a grain

of salt.

It is worthwhile to emphasize that, while we have expressed everything in units of ΛMS,

– 8 –
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the absolute value of the scale for these new theories is not known a priori, and can only

be determined by computing some physical dimensionful quantity. An obvious candidate

would be the decay constant of the technipion in the chiral limit, which is related to the

Higgs vev and can be estimated to be F ≈ 250 GeV.

Nonperturbative results that could highlight the near-conformal behaviour can be ob-

tained by Monte Carlo renormalization group methods [41, 42]. However these methods

require varying the lattice cutoff over a large interval, while simultaneously keeping the

finite-size errors under control. If the physical scales of interest are well separated, lattice

simulations require a very fine resolution, i.e. a large number of lattice points, that may

not be accessible with present-day computing resources.

The finite-volume schemes introduced in ref. [43] provide an elegant solution to this

problem; the renormalization scale is identified with the inverse of the linear lattice size,

and the evolution of the renormalized coupling is computed in steps, changing the scale µ

by factors of 2 in each step. The variation of the coupling is summarized in the step-scaling

function, which yields a precise determination of the nonperturbative beta function. Recent

results for the theory with nf = 12 fermions in the fundamental representation show that

this is a promising way to study the problem [44].

3. Perturbative renormalization

In order to perform numerical simulations, preliminary estimates of the critical mass and

of the renormalization of fermion bilinears are needed. This section summarizes some

useful computations at one and two loops in perturbation theory for fermions in generic

representations, that can be used to guide preliminary lattice studies. We will consider here

the theory defined on the lattice, with Wilson action for the fermions, and simple plaquette

action for the gauge fields. In the gauge action, the link variables are always SU(N) matrices

in the fundamental representation, while in the fermionic part of the action, the covariant

derivatives are defined through the link variables in the generic representation. Feynman

rules for perturbative calculations are easily generalized.

Simulating Wilson fermions, the bare mass in the Lagrangian undergoes an additive

renormalization, so that the chiral limit is reached for a critical value mc which needs to be

determined nonperturbatively. Again perturbation theory is useful to get some guidance

on the initial choice of parameters before embarking in actual simulations.

Following the notation in ref. [45], we write the perturbative expansion of the one-

particle irreducible two point function at zero momentum as:

mc(g0) = g2
0Σ

(1) + g4
0Σ

(2) + . . . (3.1)

At one loop, the usual tadpole and sunset diagrams give rise to two contributions, c
(1)
1 and

c
(1)
2 , respectively; for a generic fermionic representation R, these yield:

Σ(1) = 2C2(R)
[

c
(1)
1 + c

(1)
2

]

. (3.2)

At this order in perturbation theory, the additive renormalization of the mass is simply

proportional to the quadratic Casimir of the fermionic representation, while the propor-

– 9 –
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tionality constant c
(1)
1 + c

(1)
2 is independent of the representation. We can therefore use the

value in ref. [45]:

[

c
(1)
1 + c

(1)
2

]

= −0.162857058711(2). (3.3)

At two loops we need to inspect the structure of the diagrams listed in figure 2 of

ref. [45], and modify the group theoretical factors to take into account the fact that the

generators appearing in the vertices involving both fermions and gluons are in a generic

representation, whereas generators inside 3- and 4-gluon vertices are still in the fundamental

representation. For our present purposes, the result of ref. [45] (eq. (9) therein) for Σ(2)

can be recast in the form:

Σ(2) = C2(F )N d1 + C2(F )nf d2 + C2(F )2(d3 + d4), (3.4)

d1 = −0.001940(6) d2 = 0.00237236(16) (3.5)

d3 = −0.081429(8) d4 = 0.01516325(12) (3.6)

(C2(F ) is the quadratic Casimir operator in the fundamental representation). In the above,

contributions proportional to C2(F )2 have been separated into d3 (arising solely from the

two diagrams with a tadpole made out of the 4-gluon vertex) and d4 (coming from the

remaining diagrams). The extension to an arbitrary representation R is now immediate:

Σ(2) = C2(R)N d1 + 2C2(R)TR nf d2 + C2(R)C2(F ) d3 + C2(R)2d4 , (3.7)

where the quantities di are left unchanged.

The prediction from perturbation theory can be improved by resumming a specific in-

finite class of gauge invariant tadpole diagrams. This method is known under the name of

cactus dressing [25], and it has been shown to provide improved estimates for various quan-

tities of interest, bringing them closer to nonperturbative results. Unlike other approaches

for improving perturbation theory, such as refs. [46, 40], this approach does not rely on any

Monte Carlo data as input, and it is therefore ideally suited for an exploratory study, such

as the present one. Cactus resummation for the one-loop result of the critical mass simply

amounts to dividing the result by a factor c̃0 (denoted (1 − w(g0)) in ref. [25]), which is

independent of the fermion representation (since it arises from an all-order resummation

of gluon diagrams), but depends on N and on the bare coupling constant g0. The factor

c̃0 is the solution of the following equation:

u e−u(N−1)/(2N)

[

N−1

N
L1

N−1(u) + 2L2
N−2(u)

]

=
g2
0 (N2−1)

4
, c̃0 ≡ g2

0

4u
(3.8)

(Lα
β are Laguerre polynomials). For N = 2 and N = 3, eq. (3.8) simplifies to:

c̃0 = e−g2
0/(16 c̃0)

(

1 − g2
0

24 c̃0

)

, (N = 2)

c̃0 = e−g2
0/(12 c̃0)

(

1 − g2
0

8 c̃0
+

g4
0

384 c̃2
0

)

, (N = 3).
(3.9)
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Figure 4: c̃0 as a function of g2
0 for N=2 (red line) and N=3 (green line).

Figure 4 presents c̃0 [47] as a function of g2
0 , for N = 2 and N = 3. The range of g2

0 values,

for which a solution exists, extends from g2
0 = 0 (where c̃0 = 1) up to 16/

√
9e ≃ 3.23

(N = 2) and 1.558 (N = 3); this covers the whole region of physical interest. The one-loop

resummed result thus simply yields:

mc = g2
02C2(R)

[

c
(1)
1 + c

(1)
2

]

/c̃0 , (3.10)

where [c
(1)
1 + c

(1)
2 ] is given in eq. (3.3) and c̃0 may be read off figure 4.

In actual numerical simulations, the hopping parameter κ is used instead of the bare

mass m0. Based on the studies in ref. [45], we decide to use the one-loop resummed result

as our estimate of the location of the massless theory in the space of bare parameters. The

critical value of the hopping parameter is given by: κc = 1/(2mc + 8), where mc is as in

eq. (3.10).

In order to compute the decay constant of pseudoscalar mesons, the renormalization

of the axial current ZA is needed. While a nonperturbative determination of the renor-

malization constant is desirable, for the first exploratory studies we shall again rely on

perturbation theory to determine ZA. The accuracy of perturbation theory can be esti-

mated by comparing the results for QCD, where both perturbative and nonperturbative

computations are available.

The perturbative renormalization for the axial current with Wilson fermions was orig-

inally computed in ref. [48] — see also ref. [49] for a useful collection of results for the

numerical integrals that appear in lattice calculations. The computation of the renormal-

ization constant for fermion bilinears requires the computation of the vertex functions, and

of the fermion wave-function renormalization. For both quantities the Feynman diagrams
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that appear at one loop depend on the quadratic Casimir of the fermion representation.

They are therefore readily generalized to an arbitrary representation, e.g.

ZV = 1 − g2
0

16π2
C2(R)20.62, (3.11)

ZA = 1 − g2
0

16π2
C2(R)15.7, (3.12)

where the numerical factor is determined by numerical integrals that do not depend on the

fermion representation. Using the values for C2(R) in the appendix, the values of ZA and

ZV can be easily computed for a generic representation.

The one-loop perturbative results for ZV , ZA can also be improved via cactus dressing;

such an improvement has been known to work rather well with fermions in the fundamental

representation [50]. To this effect, all that is required is a substitution of g2
0 by g2

0/c̃0 in

eq. (3.11), (3.12), where c̃0 is again read off figure 4.

4. Generalized Aoki phases

The low-energy dynamics of the pseudo Goldstone particles is determined by the pattern of

chiral symmetry breaking. For theories with nf > 1 and fermions in a complex representa-

tion, such a pattern is the same as for QCD, and therefore we expect the same Lagrangian

to define the dynamics of the effective theory; clearly the low-energy constants that appear

in the Lagrangian do depend on the specific model under study. In this section we discuss

the general structure of the chiral Lagrangian for fermions in arbitrary representations,

and the possible phases of the theories discretized on the lattice.

4.1 SU(2) × SU(2) → SU(2)

For the theory T1 that we have been considering in this work, we have two flavours in a

complex representation of the gauge group and therefore the usual SU(2) × SU(2) chiral

Lagrangian is expected to determine the dynamics in the low-energy theory. Following

the notation used in ref. [51], and including the symmetry breaking terms, yields the

Lagrangian:

L =
F 2

4
Tr
(

∂µΣ†∂µΣ
)

+
c1

4
Tr
(

Σ + Σ†
)

− c2

16

{

Tr
(

Σ + Σ†
)}2

. (4.1)

The pion decay constant in technicolour theories is related to the vacum expectation value

of the (composite) Higgs field, which yields F ≈ 250 GeV. Lattice artefacts for Wilson

fermions enter in the coefficients of the symmetry breaking terms:

c1 ∼ Λ3
(

m + aΛ2
)

, c2 ∼ Λ2
(

m2 + maΛ2 + a2Λ4
)

, (4.2)

where Λ is again the hadronic scale for the theory under consideration. The pattern of

symmetry breaking depends on the coefficients c1 and c2. Since these coefficients depend

on the PCAC mass m and the lattice spacing a, the phase diagram can be mapped into

the plane of the bare parameters m0, g0, used in lattice simulations.
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The analysis in ref. [51] remains unchanged; for the theory with two flavours the field

Σ can be parametrized as:

Σ = A + iB · σ, A2 + B2 = 1, (4.3)

and the potential becomes:

−c1A + c2A
2, (4.4)

so that the minimum of the potential Σ0 = A0 + iB0 · σ can develop a non-trivial B0 only

if |A0| < 1. For c2 > 0 a region of width ∼ (aΛ)3 may exist, where the minimum of the

potential leads to an Aoki phase. Hence the approach to the chiral limit in theories with

two Wilson fermions in any complex representation is similar to the one observed in QCD:

as the quark mass is reduced at fixed lattice spacing, flavour symmetry is broken and two

massless Goldstone bosons appear. The actual values of c1 and c2 depend on the dynamics

of the theory under study, and need to be estimated for the cases of interest. Nevertheless,

in all cases, the chiral limit is entangled with the continuum limit, and the quark mass

cannot be lowered to arbitrarily small masses at fixed lattice spacing.

4.2 SU(4) → SO(4)

In considering theories in arbitrary representations, different patterns of chiral symmetry

breaking may occur. The symmetry breaking patterns and the effective theories describing

the low-energy dynamics in these cases have been studied e.g. in ref. [52 – 54, 9]. Using

this effective theory framework, we discuss the possibility of having an Aoki phase in one

case that arises in phenomenologically interesting theories, namely the breaking pattern

SU(4)→SO(4).

This symmetry breaking pattern appears for two Dirac fermions in the adjoint repre-

sentation of the gauge group, see e.g. the theory T2 discussed above. Denoting by Σ the

Goldstone matrix, the relevant effective potential for the study of the Aoki phase is:

V = −c1

4
Tr
[

Σ + Σ†
]

+
c2

16

{

Tr
(

Σ + Σ†
)}2

. (4.5)

Here Σ transforms linearly under the global symmetry group SU(4), i.e.

Σ → gΣgT with g ∈ SU(4) , (4.6)

and

Σ = Σ0 exp(i
9
∑

a

πa

fπ
Xa) . (4.7)

In discussing the possibility of an Aoki phase, we are interested in finding at least one

vacuum configuration where the condensate is not proportional to the identity. Indicating

with Xa and a = 1, . . . , 9 the generators spanning the SU(4)/SO(4) quotient space [52, 9]

(an explicit representation of the matrices Xa is reported in the appendix), we look for

solutions of the form:

Σ0 = 2
√

2(A0 + i

9
∑

a

AaXa) , (4.8)
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where Aa are real coefficients. With this Ansatz, and using the explicit expressions for the

generators, the unitarity constraint, i.e. Σ†
0Σ0 = 1, implies:

A2
0 +

(A2
1 + A2

2 + A2
3)(A

2
3 + A2

9 + A2
8)

A2
3

= 1 . (4.9)

Substituting the expression for Σ0 in the potential we find:

V = 4A2
0 c2 − 2c1A0 . (4.10)

For certain values of the potential coefficients c1, c2, there exists a minimum for A0 smaller

than one. For instance, by taking A1 = A2 = A8 = A9 = 0, but a nonzero A3, we can satisfy

the unitarity constraints and SO(4) breaks spontaneously to U(1)×U(1). That this is the

correct symmetry of the vacuum can be checked by determining which SO(4) generator

commutes with X3. We have checked that the S3 and S4 generators of SO(4) explicitly

constructed in ref. [9] are left unbroken and constitute the generators of U(1) × U(1). In

this case we would expect the emergence of an Aoki phase with four Goldstone bosons

associated to the breaking of SO(4) to U(1) × U(1).

4.3 SU(4) → Sp(4)

This symmetry breaking pattern does appear for fermions in pseudo-real representations.

The analysis is similar to the one done before, now using the five (rather than nine) X

generators presented in the appendix of ref. [53]. We seek a solution using the same Ansatz

as in the preceding subsection. The potential evaluated on the Ansatz is identical to the

one in eq. (4.10). In this case the unitarity constraint for Σ0 yields the condition:

A2
0 + A2

1 + A2
2 + A2

3 + A2
4 + A2

5 = 1 , (4.11)

For A0 = 1 one recovers the Sp(4) symmetry. On the other hand a minimum with A0 < 1

implies that the Sp(4) symmetry is spontaneously broken to SO(4). We hence have four

broken generators of Sp(4) corresponding to S1, S2, S9 and S10 in the appendix of ref. [53].

Again we find that an Aoki phase is possible, with four massless bosons.

4.4 Eigenvalues of the Dirac operator

Finally let us comment briefly on the small eigenvalues of the Dirac operator, since they

play a crucial role in theories where chiral symmetry is spontaneously broken. It was indeed

realized long ago that in QCD the chiral condensate is related to the density of eigenvalues

of the Dirac operator. This property is encoded in the Banks-Casher relation [55]:

〈0|q̄q|0〉 = −πρ(0), (4.12)

where ρ(λ) is the number of eigenvalues in the interval dλ per unit volume.

Following e.g. the derivation in ref. [56], it is straightforward to show that the same

relation holds independently of the fermionic representation. As a consequence, we expect

to have a finite density of eigenvalues around λ = 0 for any theory that breaks chiral
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symmetry spontaneously developing a non-zero chiral condensate, and hence the number

of small eigenvalues of the Dirac operator grows with the four-dimensional volume as the

mass tends to zero. This phenomenon is directly related to the spontaneous breaking of

chiral symmetry, and does not depend on the particular lattice discretization.

Moreover, for lattice formulations that do not preserve chiral symmetry, such as the

Wilson formulation, the spectrum of the hermitian Dirac operator is not bounded from

below by the bare quark mass. As the quark mass is lowered at fixed lattice spacing,

the probability of finding an exceptionally small eigenvalue becomes non-negligible. These

small eigenvalues lead to algorithmic instabilities, violations of ergodicity, and sampling

inefficiencies, which could seriously distort the output of numerical simulations [22]. A

careful study of the spectrum of the Dirac operator for theories in higher representations is

therefore necessary in order to determine a safe region for simulating Wilson fermions. This

is particularly important as one tries to study the phase diagram of novel and unknown

theories.

5. Conclusions

Gauge theories with fermions in higher-dimensional representations have been put forward

in several contexts; they are important both for phenomenological and theoretical studies.

Some of them provide viable candidates for strong electroweak symmetry breaking, that

are not ruled out by precision measurements. On a more theoretical side, they “inter-

polate” between supersymmetric and non-supersymmetric theories, thereby opening new

ways to try to tame the nonperturbative dynamics of gauge theories. Due to the recent

progress in numerical simulations of gauge theories on the lattice, it is now possible to

simulate these theories, and some first works in this direction have already appeared. In

this work, we have generalized known analytical results to the case of fermions in arbitrary

representations. In particular, we have considered the scaling as the continuum limit is

approached, the location of the critical bare hopping parameter corresponding to massless

quarks, the renormalization of fermionic bilinears, and the phase structure as the quark

mass is lowered at fixed lattice spacing. The results presented here provide some insight

on the unknown phase diagram of these theories and will be useful to guide forthcoming

simulations. Definitive answers on the strong dynamics of such theories, and therefore on

their viability as phenomenological candidates, can only be provided by actual numerical

simulations.
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R dR TR C2(R)

fund N 1/2 (N2 − 1)/(2N)

Adj N2 − 1 N N

2S N(N + 1)/2 (N + 2)/2 C2(F )2(N + 2)/(N + 1)

2AS N(N − 1)/2 (N − 2)/2 C2(F )2(N−2)
N−1

Table 2: Group invariants used in this work.

A. Group-theoretical factors

The normalization of the generators in a generic representation R of SU(N) is fixed by

requiring that:

[T a
R, T b

R] = i fabcT c
R , (A.1)

where the structure constants fabc are the same in all representations. We define:

trR

(

T aT b
)

= tr
(

T a
RT b

R

)

= TRδab, (A.2)
∑

a

(T a
RT a

R)AB = C2(R)δAB , (A.3)

and hence:

TR =
1

N2 − 1
C2(R)dR (A.4)

where dR is the dimension of the representation R. The quadratic Casimir operators may

be computed from the Young tableaux of the representation of SU(N) by using the formula:

C2(R) =
1

2

(

nN +

m
∑

i=1

ni (ni + 1 − 2i) − n2

N

)

(A.5)

where n is the number of boxes in the diagram, i ranges over the rows of the Young tableau,

m is the number of rows, and ni is the number of boxes in the i-th row.

The quantities dR, TR, C2(R) are listed in table 2 for the fundamental, adjoint, 2-index

symmetric, and 2-index antisymmetric representations.

The generators Xa spanning the SU(4)/SO(4) quotient space are defined as:

Xi =
1

2
√

2

(

τ i 0

0 (τ i)T

)

, 1 ≤ i ≤ 3; Xi =
1

2
√

2

(

0 Di

(Di)† 0

)

, 4 ≤ i ≤ 9, (A.6)

with
D4 = 1 , D6 = τ3 , D8 = τ1 ,

D5 = i1 , D7 = iτ3 , D9 = iτ1 .
(A.7)
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